52.20 40048 : P-17 N92-10046

Appendix E

## The MPD Thruster Program at JPL

John Barnett Keith Goodfellow James Polk Thomas Pivirotto JJ574450

16 May 1991

JPL

JPL

## **Outline**

THE SEI CONTEXT

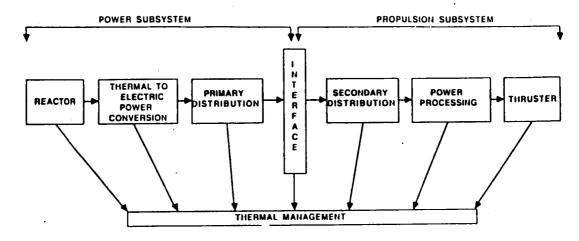
CRITICAL ISSUES OF MPD THRUSTER DESIGN

THE MPD THRUSTER PROGRAM AT JPL

## The SEI Context

- Missions:
   Robotic planetary exploration (100 500 kWe)
   Lunar and Mars Cargo (1 5 MWe)
   Piloted Mars (5 40+ MWe)
- The first piloted mission is targeted for around 2015. A round trip time of less than 1 year is desired.
- Propulsion System Options: Chemical with aerobrake Nuclear thermal propulsion Nuclear electric propulsion
- NEP offers better performance than chemical or NTP for sufficiently high power (> 10 MWe) and low specific mass (< 10 kg/kWe)</li>
- The NTP lobby, bolstered by the NERVA experience, is strong. The nuclear propulsion program has so far been arbitrarily weighted toward NTP.

#### JPL


## The Nuclear Electric Propulsion System

• The NEP System includes:

Nuclear reactor
Power conversion
Power management and distribution
Power processing
Thruster
Thermal management

• Although electric thruster funding has been anemic for decades, funding of other essential technologies is also low or absent.

## SCHEMATIC OF POWER AND PROPULSION SUBSYSTEMS



Important design considerations not shown here:
Shielding
Structure

Propellant Handling Gimbals

## Some Electric Thruster Options

• Electric thruster options include:

Deflagration

**ECR** 

**ICR** 

Ion

MPD

Pulsed inductive

Pulsed plasmoid

"Variable Isp"

• Ion and MPD thrusters are leaders due to their developmental heritage. The ion engine is efficient, but has a relatively low thrust density and has been developed primarily at ≤ 10 kW. The MPD thruster is simpler in design and has a higher thrust density, but has not demonstrated efficient performance with the propellants normally considered. Neither device has demonstrated the required lifetime.

# Critical Issues of MPD Thruster Development

GOAL: On a five-year time scale, demonstrate that performance required for SEI applications can be achieved or downselect to another thruster or propulsion system.

## CRITICAL ISSUES: SYSTEM LEVEL

ISSUE: Definition of operational requirements REQUIREMENT: Specification of characteristics of an MPD thruster-based propulsion system that beats the performance of competing systems for SEI missions (e.g. specific impulse, efficiency, specific mass, system power) STATUS: Poor definition of SEI missions, requirements APPROACH: Trade studies (including mix and match studies of MPD thruster with other sub-system options; pulsed vs. steady state operation; reliability analysis)

# Critical Issues of MPD Thruster Development (Cont'd)

ISSUE: Thruster-spacecraft interactions REQUIREMENT: Understanding of effects on spacecraft of MPD thruster, including mechanical, thermal and electrical interfaces; dynamic effects; exhaust plume-spacecraft interactions (including contamination from propellant and erosion products); and thruster-thruster interactions STATUS: Poor understanding of these topics APPROACH: Analysis and design studies; supporting experimental verification. A flight demonstration is essential.

# Critical Issues of MPD Thruster Development (Cont'd)

ISSUE: Operating power level REQUIREMENT: Megawatts per thruster STATUS: Up to 300 kW (US); up to 800 kW (GE); MW level (claimed by USSR) in steady state. Multi-MW achieved in millisecond pulses.

APPROACH: Facilities-limited issue. US has taken an "evolutionary" approach to high power, steady state operation (versus an Edisonian approach).

ISSUE: Specific impulse REQUIREMENT: 3000 to 8000 s, depending on mission STATUS: Required range achieved for low (<100 kW) power steady state and MW-level pulsed operation APPROACH: Maintain desired range while increasing power, efficiency and lifetime. Focus on electrode geometry and propellant selection, injection.

# Critical Issues of MPD Thruster Development (Cont'd)

CRITICAL ISSUES: COMPONENT LEVEL

ISSUE: Efficiency (Electric input to directed kinetic)

**REQUIREMENT:** > 50%

STATUS: 40% on H2; nearly 70% on Li reported at about 5000 s. (These data for pulsed or low power devices.) APPROACH: Analyses and experiments focused on the design parameters electrode geometry; magnetic field strength and geometry (self or applied); propellant (substance, flow rate, injection geometry); total power

level; and physical scale

ISSUE: Lifetime

REQUIREMENT: 10E9 N-s (on the order of 6 months,

100 N)

STATUS: 10E6 N-s demonstrated steady-state (500 hr,

33 kW)

APPROACH: Analyses and experiments focused on the parameters total power; component operating temperature and materials; electrode geometry and current density; magnetic field strength and configuration; propellant

## Critical Issues of MPD Thruster Development (Cont'd)

ISSUE: Thermal management

REQUIREMENT: Remove MW of thermal power from

engine at temperatures of 1400 K to 2300 K.

STATUS: Technology appears in hand; need for design and

experimental verification.

APPROACH: Self-radiating grids, pumped Li loop,

composite fins

ISSUE: Facility requirements
REQUIREMENT:10E7 I/s pumping speed (for 6 g/s Ar
at 10 E-4 torr). Must be dedicated for life tests, able to
accommodate thermal load.
STATUS: Existing US facilities have pumping speeds at
least an order of magnitude too small, are very expensive,
and are not dedicated to MPD thruster development.
APPROACH: Establish facility requirements for various
developmental tasks; use existing facilities to generate data
supporting the cost of a dedicated full-up facility. Explore
alternate pumping schemes. Establish pulsed-steady state
correspondence.

## JPL Summary of Critical Issues

| ISSUE                                                                   | A FOCUS OF JPL's MPD PROGRAM |
|-------------------------------------------------------------------------|------------------------------|
| Definition of operational requirements Thruster-spacecraft interactions | X                            |
| Operating power level Specific Impulse Efficiency                       |                              |
| Lifetime Thermal management Facility requirements                       | X<br>X<br>X                  |

# The MPD Thruster Program at JPL: Programmatic Overview

Funded under NASA RTOP

• FY91 Level of Effort: 3.5 WY

Personnel: T. Pivirotto (RTOP Manager)

K. Goodfellow

J. Polk

W. Thogmartin

Facility: 3000 square feet

Five test chambers

Three 60 kW welding power supplies

#### **JPL**

## The MPD Thruster Program at JPL

EMPHASIS: Engine component lifetime and thermal

management.

APPROACH: Theoretical and experimental specifi-

cation of thermal loads and failure

mechanisms

#### **SPECIFIC ELEMENTS:**

Testbed MPD engine

High-current cathode test facility

Component thermal modelling

Alkali metal propellant studies

## **Radiation-cooled MPD Thruster**

GOAL: Develop a testbed engine to study thruster thermal behavior and life-limiting mechanisms.

#### **PROGRESS:**

Stable operation demonstrated for

Power:

3-50 kW

Applied B-field:

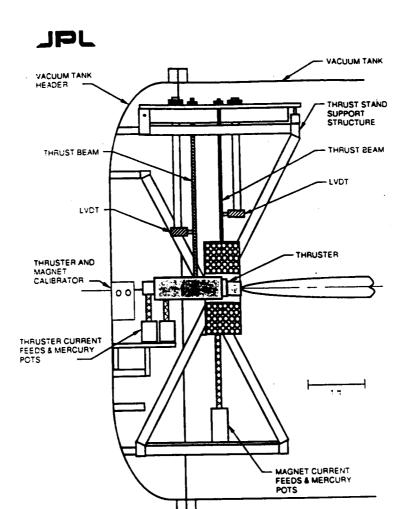
0-1360 G

Propellant/Flow rate: Argon 0.07-0.43 g/s

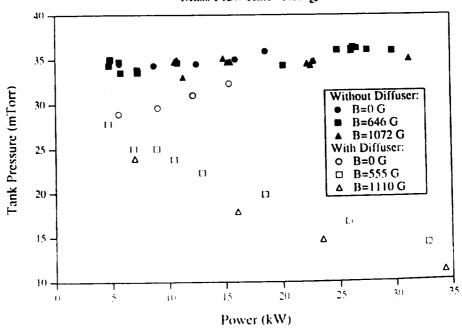
Ammonia 0.07-0.30 g/s

- Graphite and tungsten nozzles tested
- Two cathode geometries tested

#### JPL


## **Radiation-cooled MPD Thruster**

## PROGRESS (cont.):


- · Preliminary thrust data obtained
- Alternate pumping scheme verified

## **SUBSEQUENT MILESTONES:**

- Demonstrate stable operation over a range of operating conditions at powers ≥ 100 kW
- · Develop a database of component thermal data
- · Explore approaches to anode thermal management
- Continue development of diffuser to improve backpressure



#### DIFFUSER EFFECT ON TANK PRESSURE Mass Flow Rate=0.09 g/s Ar



## **High-Current Cathode Test Facility**

GOAL: Supply thermal data for modelling effort and develop long-lived cathodes for high current applications.

#### **PROGRESS:**

- Testing requirements defined
- Vacuum facility obtained



## **High-Current Cathode Test Facility**

#### **PLANNED ACTIVITIES:**

- Cathode surface temperature measurements
- Characterization of near-cathode plasma environment
- Erosion measurements and alternate materials evaluation
- Cathode endurance tests

# Thruster Component Thermal Modelling

GOAL: Develop capability to predict engine component temperatures for given geometries and operating conditions.

#### **PROGRESS:**

- Commercial FEM software procured
- Simple cathode sheath model completed
- Developing cathode thermal model

JPL

# Thruster Component Thermal Modelling

### **SUBSEQUENT MILESTONES:**

- Complete component thermal models
- Refine electrode sheath models to provide boundary conditions
- Couple component and sheath models with a plasma flow model--potential for JPL-LeRC collaboration
- Experimentally confirm model predictions

## Alkali Metal Propellant Studies

GOAL: Evaluate benefits of alkali metal propellants

### **CURRENT ACTIVITY:**

- Performing preliminary assessment of systems-level impact of alkali metal propellants
- Estimating cost of performing alkali metal thruster tests at the JPL Edwards Facility

## JPL

## Alkali Metal Propellant Studies

## POTENTIAL FUTURE EMPHASIS:

- Develop facility and expertise in alkali metal handling
- Study effect of propellant on cathode work function
- Verify performance improvements
- Define contamination potential